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A B S T R A C T

Multimodal sarcasm detection, as a sentiment analysis task, has witnessed great strides owing to the rapid
development of multimodal machine learning. However, existing graph-based studies mainly focus on capturing
the atomic-aware relations between textual and visual graphs within individual instances, neglecting label-
aware connections between different instances. To address this limitation, we propose a novel Label-aware
Graph Contrastive Learning (LGCL) method that detects ironic cues from a label-aware perspective of
multimodal data. We first construct unimodal graphs for each instance and fuse them into graph semantic
space, to obtain the multimodal graphs. Then, we introduce two label-aware graph contrastive losses: Label-
aware Unimodal Contrastive Loss (LUCL) and Label-aware Multimodal Contrastive Loss (LMCL), to make the
model aware of the shared ironic cues related to sentiment labels within multimodal graph representations.
Additionally, we propose Back-translation Data Augmentation (BTrA) for both textual and visual data to
enhance contrastive learning, where different back-translation schemes are designed to generate a larger
number of positive and negative samples. Experimental results on two public datasets demonstrate our method
achieves state-of-the-art (SOTA) compared to previous methods.
1. Introduction

Sarcasm, a commonly used form of figurative expression, is utilized
in various real-life situations to convey meanings that are opposite to
their literal interpretations [1]. It plays a crucial role in analyzing hu-
man sentiment and perspective within conversations, steadily offering
benefits across a spectrum of domains. These domains include natural
language dialogue [2], public sentiment detection [3], and meticulous
analysis of the nuanced dynamics within social media [4]. With the
widespread use of mobile internet and smartphones, increasing users
are willing to post multimodal data (text, images, videos) to express
their feelings and sentiments on various topics. As a result, multimodal
sarcasm detection has gained increasing research attention in recent
years [5–9], emerging as a highly sought-after topic in the field of
natural language processing and multimedia computing.

Till now, extensive research has been conducted to tackle the task
of multimodal sarcasm detection. Previous studies, such as Schifanella
et al. [10] and MMSD [5], have explored the fusion of different feature
vectors to combine multimodal features. Nevertheless, solely relying
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on multimodal data fusion is insufficient to tackle this task, as the key
to effective multimodal sarcasm detection lies in accurately extracting
incongruent sentiment cues from different modalities. Consequently,
some methods [9,11,12] attempt to model this characteristic of incon-
gruity between image and text with the attention mechanisms, optimal
transport method, and dynamic network. To model the relationship
between modalities more accurately, the following studies [7,8,13]
introduce graph-based methods to capture the incongruity between
modalities data. Although promising, current graph-based methods
mainly consider modeling the incongruity between visual and textual
graphs within a single instance, while neglecting the common irony
characteristics exhibited by the instances that share the same label. For
example, Fig. 1 illustrates four image-text pairs labeled as sarcasm con-
vey similar sarcastic cues, where visual regions contradict the meaning
of phrases (e.g. lovely weather, great weather) in the text. This inspired
us to utilize sentimental labels to draw intricate connections among
instances, thereby facilitating learning sarcastic clues.

In this paper, we propose a novel Label-aware Graph Contrastive
Learning (LGCL) method that involves several key components. First,
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Fig. 1. Four multi-modal sarcastic examples. Boxes and words in the red color denote
highly correlated sarcastic cues.

we independently encode the visual graph and textual graph with graph
attention network (GAT) [14] to capture the unique characteristics of
each modality. Additionally, we introduce a multimodal graph fusion
module that combines the two unimodal graphs into a unified graph
semantic space. Thus, we can leverage multimodal complementary
strengths and enhance the overall representation. Moreover, we pro-
pose two label-aware graph contrastive losses. The first loss called the
label-aware unimodal contrastive loss (LUCL), operates on the graph
representations from the unimodal encoders. It treats the unimodal
graphs within an instance as positive samples, encouraging them to be
similar while considering the graphs from instances with different la-
bels as negative samples. This loss promotes intra-instance multimodal
alignment by creating a clear separation in the negative sample space.
The second loss called label-aware multimodal contrastive loss (LMCL),
is applied after the graph fusion process. It focuses on multimodal
graphs within the same label, considering them as positive samples,
while treating graphs from instances with different labels as negative
samples. By applying this loss, our model learns to generate more sim-
ilar multimodal graph representations for instance pairs with the same
label, while pushing away those pairs that have different labels. To
facilitate contrastive learning, we propose a data augmentation method
called Back-translation Augmentation (BTrA). This method generates a
larger number of positive and negative samples for both text and image
modalities. For text, we leverage pre-trained large language model
GPT-3.5 [15], to translate and back-translate existing text, resulting
in augmented text. For image augmentation, we employ a pre-trained
BLIP model [16] to generate captions for images, which are then used
as prompts for the pre-trained stable-diffusion model [17] to translate
back into augmented images. Remarkably, this is the first attempt
to employ the large language model for data augmentation in senti-
ment detection tasks. For evaluation, we conducted experiments on the
publicly available multimodal sarcasm detection datasets, MMSD [5]
and MMSD2.0 [18]. The results demonstrate that our model achieves
state-of-the-art performance across all metrics.

1. We propose a novel Label-aware Graph Contrastive Learning
(LGCL) method for multi-modal sarcasm detection. It aims to
overcome the limitation that existing multi-modal sarcasm de-
tection models only consider modeling the incongruity between
visual and textual graphs within individual instances, while
neglecting the common ironic characteristics among instances
with the same labels.
2

2. To improve the performance of contrastive learning, we pro-
pose Back-translation Augmentation, leveraging different back-
translation methods. This approach allows us to generate a larger
number of positive and negative samples. Notably, our research
is the first attempt to employ the large language model for data
augmentation in sentiment detection task.

3. Experimental results show our model achieves state-of-the-art
(SOTA) on two public multimodal sarcasm detection datasets
MMSD [5] and MMSD2.0 [18] across all metrics. We also con-
duct extensive experiments to validate the effectiveness and con-
tribution of the different components in our proposed method.

2. Related work

2.1. Multimodal sarcasm detection

Multimodal sarcasm detection has emerged as a progressively chal-
lenging task due to the escalating demand for analyzing multimodal
content across social media platforms. Schifanella et al. [10] pioneered
this field by addressing it as a multimodal classification challenge,
merging manually engineered multimodal features. Subsequently,
MMSD [5] proposed a hierarchical fusion model that amalgamates
features from textual and visual modalities, leveraging a novel multi-
modal sarcasm detection dataset rooted in Twitter data. D&R Net [19]
introduced the Decomposition and Relation Network, capturing con-
textual contrasts and semantic associations within multimodal data.
Att-BERT [20] harnessed co-attention and self-attention mechanisms
for imbibing congruity information within and between modalities.
DynRT-Net [21] modeled the dynamic mechanism to restrict the model
from dynamically adjusting to diverse image-text pairs. Within the do-
main of graph-based methodologies, InCrossMGs [6] probed sentiment
inconsistencies through intra- and cross-modal graph construction.
CMGCN [13] conceived cross-modal graphs to delineate ironic relation-
ships between textual and visual elements. Moreover, HKEmodel [7]
introduced hierarchical congruity modeling via cross-attention mecha-
nisms and graph neural networks. Meanwhile, MILNet [8] orchestrated
three distinct graphs to decipher local and global incongruities. Al-
though promising, existing graph-based methods mainly focus on how
to draw multimodal graphs and integrate graph features, while ne-
glecting to draw the intricate connections among instances based on
sentiment labels from existing instances to facilitate prediction.

2.2. Graph neural networks

Graph Neural Networks (GNNs) have emerged as a transformative
paradigm for capturing intricate relationships within graph-structured
data. The pioneering work introduced Graph Convolutional Networks
(GCNs) [22], propelling graph analysis by fusing spectral graph theory
with neural networks. This catalyzed a wave of innovations, including
Graph Attention Networks (GAT) [14], which elegantly incorporate
attention mechanisms to selectively aggregate node information. Mean-
while, GraphSAGE [23] champions inductive learning, adeptly learning
representations from diverse nodes by neighborhood aggregation. Re-
cent strides have showcased the versatility of GNNs across domains.
Sui et al. [24] leveraged GNNs for causal inference in graphs, unveiling
underlying causal structures. Link prediction was reinvigorated by Kou
et al. [25]. using GNNs, illuminating evolving network dynamics. GNNs
have also redefined recommendation systems [26], personalizing rec-
ommendations by intertwining graph insights. Despite their successes,
the potential of GNNs for multimodal modeling tasks can be further

explored.
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Fig. 2. The overall framework of the proposed method for multimodal sarcasm detection. In the framework, the left part denotes the Multimodal Graph Fusion Process. While the
bottom right part denotes the Label-aware Graph Contrastive Learning (LGCL) and the top right part denotes the Back-translation Data Augmentation (BTrA).
2.3. Contrastive learning

Contrastive learning, aiming to learn meaningful representations
for a given task, has been widely applied in various fields, such as
natural language processing (NLP), computer vision, and multimodal
domains. In NLP, ConSERT [27], Sim-CSE [28], and CLEAR [29] have
employed contrastive learning to capture discriminative semantic infor-
mation. In computer vision, SimCLR [30], Sim-Siam [31] and CLIP [32]
have applied this technique to improve the performance of the model.
Recently, contrastive learning has also gained popularity in recom-
mendation systems [33–36]. In particular, GraphCL [34], GCA [35],
and DSGC [36] have applied graph contrastive learning with graph
augmentations for graph neural networks to handle data heterogeneity
in graphs. However, graph contrastive learning has not been explored
in the field of multi-modal sarcasm detection, and meanwhile, those
methods relying on designing a data augmentation in the structural
domain to enlarge contrastive pairs are not adapted to multi-modal
sarcasm detection.

3. Methodology

In this section, we introduce the details of the LGCL method. The
overall architecture of the LGCL is illustrated in Fig. 2, which mainly
consists of three components: Multimodal Graph Fusion (MGF) Process,
Label-aware Graph Contrastive Learning (LGCL), and Back-translation
Augmentation (BTrA).

3.1. Multimodal graph fusion process

The left of Fig. 2 depicts the multimodal graph fusion process,
including two unimodal encoders and a multimodal graph fusion mod-
ule. The image and text inputs are first encoded by unimodal graph
encoders respectively to obtain the unimodal graphs. Then, we feed
the unimodal graphs into a multimodal graph fusion module that
is composed of M stacked multi-head self-attention layers [37] to
learn cross-modal incongruity, resulting in multimodal graphs with
cross-modal information.

Textual Graph Encoder. Given a sequence of words 𝑆 = {𝑤𝑖}𝑛𝑖=1,
where 𝑛 represents the length of the text 𝑆, we utilize the pre-trained
3

model RoBERTa [38] as the text encoder. The RoBERTa model encodes
each word 𝑤𝑖 into a 𝑑𝑇 -dimensional embedding as follows:

𝑋𝑡 = [𝑡𝑐𝑙𝑠, 𝑡1, 𝑡2,… , 𝑡𝑛] = 𝑅𝑜𝑏𝑒𝑟𝑡𝑎([𝐶𝐿𝑆,𝑤1, 𝑤2,… , 𝑤𝑛]) (1)

Here, 𝑋𝑡 is the textual representation of the input text, and 𝐶𝐿𝑆
denotes the class token, which is excluded from the subsequent graph
construction. To unify the dimensions of representations across dif-
ferent modalities, we add an additional multi-layer perceptron (MLP)
following the text encoder to transform the dimension 𝑑𝑇 to 𝑑. Next, we
follow the approach presented in the previous work [13] to construct
the textual graph. In this approach, the input tokens are modeled as
graph nodes, while the dependency relations between words, obtained
through the spaCy library,1 are utilized as the graph edges. Concretely,
an edge between two words is established in the textual graph when-
ever a dependency relation is detected between them. After that, the
textual graph is fed into 2-layer graph attention networks (GAT) to
obtain the final representation, which can be defined as:

𝛼𝑙𝑖𝑗 =
𝑒𝑥𝑝

(

𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈
(

⃖⃗𝑎𝑇𝑙
[

𝑊𝑙𝑡𝑙𝑖 ||𝑊𝑙𝑡𝑙𝑗
]))

∑

𝑘∈𝑛𝑒𝑥𝑝
(

𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈
(

⃖⃗𝑎𝑇𝑙
[

𝑊𝑙𝑡𝑙𝑖 ||𝑊 �⃗�𝑙𝑘
]))

(2)

⃖⃖⃖⃖⃖⃗𝑡𝑙+1𝑖 = 𝜎

(

∑

𝑗∈𝑛
𝛼𝑖𝑗𝑊𝑙

⃖⃖⃗𝑡𝑙𝑗

)

(3)

where 𝑙 ∈ R𝑑×𝑑 and 𝑊𝑙 ∈ R2𝑑 are learnable parameters of the 𝑙th
layer. 𝜎 is a scalar indicating the attention score between node 𝑖 and
its neighborhood node 𝑗. �⃗�𝑙𝑗 represents the feature of node 𝑖 in the 𝑙th
layer, with �⃗�𝑙0 = 𝑡𝑖 initialized from the text representation 𝑋𝑡. As such,
we obtain the final textual graph representation 𝐺𝑡 = {𝑡𝑔1 , 𝑡

𝑔
2 ,… , 𝑡𝑔𝑛}.

Visual Graph Encoder. For an image 𝐼 , we utilize a pre-trained
toolkit developed by [39] to generate a set of regions, denoted as
𝑅 = {𝑟1, 𝑟2,… , 𝑟𝑘}. Each region is resized to 224 × 224 and then
divided into 𝑝 patches. Subsequently, we utilize a pre-trained Vision
Transformer (ViT-B/32) [40] along with an additional MLP as the
image encoder to encode each region and obtain visual representations.
Thus, the representation of the 𝑖th region that can be denoted as 𝑉𝑖 =
{𝑣𝑐𝑙𝑠𝑖 , 𝑣1𝑖 , 𝑣

2
𝑖 ,… , 𝑣𝑝𝑖 }, where 𝑐𝑙𝑠 is the representation of [CLS] token and

𝑉𝑖 ∈ R[𝑝+1]×𝑑 . Subsequently, we use the [CLS] token as representation

1 https://spacy.io/

https://spacy.io/
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of each region, resulting in the final visual representations 𝑋𝑣 =
𝑣𝑐𝑙𝑠1 , 𝑣𝑐𝑙𝑠2 ,… , 𝑣𝑐𝑙𝑠𝑘 } for the image, where 𝑋𝑣 ∈ R𝑘×𝑑 . For constructing
isual graphs, we build edges between each region according to the
osine similarity of representations. We establish an edge between
wo regions if their cosine similarity exceeds a predefined threshold,
enoted as 𝜂. Then, we also model the visual graphs with 2-layer
raph attention networks. The detailed definition of the graph attention
etwork has been provided in Eq. (2) and Eq, and we omit its explicit
escription here for brevity. (3). Consequently, we obtain the final
isual graph representation 𝐺𝑣 = {𝑣𝑔1 , 𝑣

𝑔
2 ,… , 𝑣𝑔𝑟 }.

Multimodal Graph Fusion Module. In the multimodal graph fu-
ion module, we first concatenate the unimodal graph representations
𝑣 and 𝐺𝑡 as 𝐺[𝑣,𝑡]. Then, we employ 𝑀 stacked multi-head self-
ttention layers to fuse the two graph representations. In each layer,
he output can be computed as follows:

𝑒𝑎𝑑𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
(𝐺[𝑣,𝑡]𝑊 𝑖

𝑞 )
𝑇

√

𝑑∕ℎ
(𝐺[𝑣,𝑡]𝑊 𝑖

𝑘 ))(𝐺
[𝑣,𝑡]𝑊 𝑖

𝑣 ) (4)

�̂� = 𝑛𝑜𝑟𝑚(𝐺[𝑣,𝑡] +𝑀𝐿𝑃 ([ℎ𝑒𝑎𝑑1 ∥ ℎ𝑒𝑎𝑑2 ∥ ... ∥ ℎ𝑒𝑎𝑑ℎ])) (5)

where 𝑊 𝑖
𝑞 ∈ R𝑑× 𝑑

ℎ , 𝑊 𝑖
𝑘 ∈ R𝑑× 𝑑

ℎ and 𝑊 𝑖
𝑣 ∈ R𝑑× 𝑑

ℎ are query, key,
and value projection matrices, respectively. ‘‘norm’’ denotes the layer
normalization, "∥" denotes the concatenation operation and ℎ denotes
the number of the head in multi-head self-attention layer. After the
processing of M attention layers, we denote the representations for the
last attention layer as 𝐺 = {𝑔1, 𝑔2,… , 𝑔𝑟+𝑛}.

To concisely present the subsequent label-aware graph contrastive
learning, we employ the mean-pooling operation followed by nor-
malization operation to perform dimensionality reduction on textual
graph representation 𝐺𝑡, visual graph representation 𝐺𝑣 and multi-
modal graph representation 𝐺, respectively, thereby obtaining the final
graph features 𝑡𝑔 , 𝑣𝑔 and �̄�.

3.2. Label-aware graph contrastive learning

To enhance the sensitivity of the model to the label-aware distribu-
tion and improve its ability to learn graph representations concerning
sentiment labels, we propose the Label-aware Graph Contrastive Learn-
ing method, as depicted in the bottom right of Fig. 2. To achieve this,
we design a label-aware unimodal contrastive loss before the graph
fusion stage, followed by a label-aware multimodal contrastive loss
after the graph fusion. These loss functions are specifically designed
to optimize the model’s performance in capturing sentiment-related
information within the graph representations.

Label-aware Unimodal Contrastive Loss. Previous Vision-and-
Language Pre-training (VLP) methods [32,41] have shown that align-
ing unimodal features prior to fusion facilitates cross-modal learning.
These methods achieve feature alignment by employing image-text
contrastive loss, where unimodal features from the same instance are
treated as positive samples for each other, while unimodal features
from different instances serve as negative samples. Although effective
for VLP tasks, these approaches are not directly applicable to multi-
modal sarcasm detection. This is because in sarcasm detection, samples
exhibit correlations based on sentiment labels, unlike in VLP tasks
where samples are independent and lack categorical relationships.

To address this challenge, we propose a label-aware unimodal con-
trastive loss(LUCL) for multimodal sarcasm detection, as it is not rea-
sonable to label unimodal features from all other instances as negative
samples. In Fig. 2, visual and textual graphs are labeled as positive sam-
ples for each other, indicated by the blue squares along the diagonal.
Conversely, instances with different labels from the current instance are
labeled as negative samples, represented by the gray squares. In con-
trast to VLP tasks, where the negative samples commonly include other
instances(represented by white squares), considering these instances as
negative samples in the context of sarcasm detection would disrupt the
negative sample space due to the label correlation among instances.
4

t

Consequently, we exclude these contentious samples in negative sample
space.

In the following, we briefly introduce the proposed LUCL. Suppose
we have a text-image pair 𝑝𝑖 = {𝑡𝑔𝑖 , 𝑣

𝑔
𝑖 } that belongs to class 𝑐, we first

define its negative sample space. Specifically, considering a data mini-
batch of size 𝑏, we regard the other image-text pairs that do not belong
to class 𝑐 as negative samples. Thus, we can obtain the negative sample
space for 𝑝𝑖 as 𝛹𝑖. Subsequently, we calculate the softmax-normalized
visual-to-textual and textual-to-visual similarity in terms of the negative
sample space. The definition can be stated as follows:

𝜌𝑣2𝑡 =
𝑒𝑥𝑝(𝑠(𝑣𝑔𝑖 , 𝑡

𝑔
𝑖 )∕𝜏𝑢)

∑

𝑘∈𝛹𝑖
𝑒𝑥𝑝(𝑠(𝑣𝑔𝑖 , 𝑡

𝑔
𝑘)∕𝜏𝑢)

(6)

𝑡2𝑣 =
𝑒𝑥𝑝(𝑠(𝑡𝑔𝑖 , 𝑣

𝑔
𝑖 )∕𝜏)

∑

𝑘∈𝛹𝑖
𝑒𝑥𝑝(𝑠(𝑡𝑔𝑖 , 𝑣

𝑔
𝑘)∕𝜏𝑢)

(7)

where 𝑠(., .) is the similarity function, 𝜏𝑢 indicates learning temperature.
Let 𝑦𝑣2𝑡 and 𝑦𝑡2𝑣 denote the ground-truth one-hot similarity, where
negative pairs have a probability of 0 and the positive pair has a
probability of 1. The LUCL loss is defined as the cross-entropy between
𝜌 and 𝑦:

𝐿𝑙𝑢𝑐𝑙 =
1
2
[𝐶𝐸(𝑦𝑣2𝑡, 𝜌𝑣2𝑡) + 𝐶𝐸(𝑦𝑡2𝑣, 𝜌𝑡2𝑣)] (8)

where 𝐶𝐸 represents the cross-entropy function.
Label-aware Multimodal Contrastive Loss. To enable the model

to learn the label-aware features from multimodal graphs, we use label-
aware multimodal contrastive loss during the fusion process in the MGF
module. As illustrated in the LMCL in Fig. 2, we divide the multimodal
graphs within each batch into positive and negative examples according
to their labels. For example, in Fig. 2, for multimodal graphs with
sarcasm labels, the graphs in the batch sharing the same sarcasm
label indicate positive examples (blue squares), while graphs with
non-sarcasm labels are marked as negative examples (gray squares).

In the following, we give the mathematical expressions to better
understand the proposed LMCL. For a given batch of size 𝑏, we define
(�̄�𝑖) = 𝑔𝑘 ∣∈ {𝑔1, 𝑔2,… , 𝑔𝑏} as a set of instance. We introduce loss

function 𝐿𝑖𝑗
𝑙𝑚𝑐𝑙 aimed at maximizing the similarity between pairs of

ample 𝑔𝑖 and 𝑔𝑗 within the same sarcastic class. This loss is formulated
as:

𝐿𝑖𝑗
𝑙𝑚𝑐𝑙 = −𝛽𝑖𝑗 𝑙𝑜𝑔

𝑒𝑠(𝑔𝑖 ,𝑔𝑗 )∕𝜏
∑

𝑘∈𝑓 (𝑔𝑖) 𝑒
−𝑠(𝑔𝑖 ,𝑔𝑘)∕𝜏

(9)

where 𝑠(., .) is the similarity function, 𝜏 indicates learning temperature,
and 𝛽𝑖𝑗 denotes the class indicator to ensure that the LMCL loss only
applies to samples of the same class. Specifically, if 𝑡𝑖 and 𝑡𝑗 share the
same sarcastic label, 𝛽𝑖𝑗 is set as 1, encouraging their closer proximity
n the latent space. Conversely, if their labels differ, 𝛽𝑖𝑗 will be set as 0
o avoid unnecessary clustering. Mathematically, 𝛽𝑖𝑗 can be defined as
ollows:

𝛽𝑖𝑗 = 1, if 𝑆𝑖 == 𝑆𝑗

𝛽𝑖𝑗 = 0, else
(10)

here 𝑆𝑖 and 𝑆𝑗 represents the sarcastic labels for 𝑡𝑖 and 𝑡𝑗 respectively.
hus, for a given sample 𝑡𝑖, we can formalize the overall loss as 𝐿𝑖

𝑙𝑚𝑐𝑙 =

𝑗∈𝑓 (�̄�𝑖) 𝐿
𝑖𝑗
𝑠𝑐𝑐 . This formulation encourages samples from the same class

s �̄�𝑖 to cluster together.

.3. Back-translation data augmentation

Data augmentation has consistently served as a fundamental strat-
gy for enhancing contrastive objectives. In graph contrastive learning,
xisting methods [34,42] adopt augmentation schemes in the structural
omain, such as uniformly dropping edges or shuffling features. How-
ver, data augmentation in the structural domain potentially results in

he loss of valuable information within the graph, which may hinder
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Fig. 3. The number of positive and negative samples in a batch for the proposed
LUCL loss, with and without back-translation data augmentation. The green circles and
squares denote the text and image data for the current instance, and we treat them as
positive samples of each other. The orange circles and squares denote text and image
data from other instances that belong to different categories from the current instance,
which we treat as negative samples.

the model’s ability to capture meaningful patterns [35]. To mitigate
this issue, a more effective approach is to perform data augmentation
in the data domain [43]. This involves generating a more diverse
set of positive and negative samples while preserving the semantic
integrity of the original data. To this end, we propose back-translation
data augmentation, which generates additional visual and textual data,
thereby expanding the positive and negative sample space in the data
domain.

For text augmentation, we design the text-based back-translation.
This method [44,45] has proven effective in generating diverse para-
phrased sentences while preserving the semantic meaning of the orig-
inal content. Therefore, we employ the back-translation technique to
create positive and negative text samples in graph contrastive learning.
This process involves utilizing a pre-trained back-translation model to
translate an existing text in language 𝐸 into another language 𝐶, and
subsequently translating it back to language 𝐸, resulting in an aug-
mented text. In contrast to the previous methods [44,45], we employ a
large language model for back-translation augmentation, as illustrated
in Fig. 2. Specifically, we first define a text instruction ‘‘Translate this
text into Chinese and then back into English’’. Using this instruction, we
leverage the GPT-3.5 model [15] to translate existing text 𝑆 = {𝑤𝑖}𝑛𝑖=1
into Chinese and then translate it back to obtain an augmented text �̃�.

Regarding the image augmentation method, we introduce cross-
modal back-translation for data augmentation, as depicted in Fig. 2.
The process involves two main components: the BLIP model [16] for
caption generation given an image, and the stable-diffusion model [17]
for generating an image based on the input textual prompt. Thus, we
first employ the pre-trained BLIP model to generate the caption for a
given image 𝐼 , which can be defined as:

𝐶 = 𝐵𝐿𝐼𝑃 (𝐼, 𝜃𝑐 ) (11)

where 𝜃𝑐 denotes the pre-trained parameters of the BLIP model [16],
𝐶 denotes the generated caption. Subsequently, we utilize the caption
as a prompt and employ the pre-trained stable-diffusion model [17] to
translate the prompt back to an augmented image 𝐼 :

𝐼 = 𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛(𝐶, 𝜃𝑑 ) (12)

where 𝜃𝑑 denotes the pre-trained parameters of the stable-diffusion
model. The process of cross-modal back-translation for image augmen-
tation, visualized in Fig. 8, allows for the generation of diverse visual
content while preserving the semantics of the original images.
5

Table 1
Statistics of the experimental data.
Dataset Label Train Val Test

MMSD
Sarcasm 8642 959 959
Non-sarcasm 11 174 1451 1450
All 19 816 2410 2409

MMSD2.0
Sarcasm 9572 1042 1037
Non-sarcasm 10 240 1368 1372
All 19 816 2410 2409

Fig. 3 illustrates the number of positive and negative samples in a
batch for the proposed label-aware unimodal contrastive loss (LUCL),
with and without back-translation data augmentation. This data aug-
mentation results in a doubling of the scale of positive and negative
samples within the data domain compared to the original dataset.

3.4. Training loss

Our model optimizes three losses, including a classification loss and
two contrastive losses.

In sarcasm classification, we first use mean pooling to perform
dimensionality reduction on multimodal graph representations 𝐺 =
{𝑔1, 𝑔2,… , 𝑔𝑟+𝑛}, and get the final graph representations 𝑞. After that,
we use the cross-entropy loss function as the sarcasm classification loss:

𝐿𝑐𝑒 = 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐺𝐸𝐿𝑈 (𝑞𝑊𝑐𝑒 + 𝑏𝑐𝑒)) (13)

The two contrastive losses can be simply added to the classification
loss as the final loss:

𝐿 = 𝐿𝑐𝑒 + 𝜆𝑙𝑢𝑐𝑙𝐿𝑙𝑢𝑐𝑙 + 𝜆𝑙𝑚𝑐𝑙𝐿𝑙𝑚𝑐𝑙 (14)

where 𝜆𝑙𝑢𝑐𝑙 and 𝜆𝑙𝑚𝑐𝑙 are coefficients to balance the different training
losses.

4. Experimental setup

In this section, we first introduce the experimental setup. Then,
we present the comparative results and conduct an ablation study
with more model variants. Furthermore, we show the advantage of
our model by a case study and visualization experiment. Finally, we
conduct a qualitative analysis of the proposed back-translation data
augmentation.

4.1. Datasets

We demonstrate the effectiveness of our method on two public
datasets which are MMSD and MMSD2.0. Both datasets collect data
from Twitter, each text-image pair is labeled by a single sentiment.
Besides, MMSD2.0 conducts data optimization to address the issues
in MMSD by removing the spurious cues and fixing unreasonable
annotation, for multi-modal sarcasm detection. For a fair comparison,
we follow the experimental settings of prior work [5], which divides the
data into training, validation, and test sets in a ratio of 80%:10%:10%.
The detailed statistics for the MMSD and MMSD2.0 datasets are listed
in Table 1.

4.2. Implementation details

We utilize the pre-trained Roberta model to embed the input text
and employ the pre-trained ViT to embed image regions, where both
embedding sizes are set to 768. In visual graph modeling, we ex-
tract 36 regions from each image, and the regions are established
edges between with cosine similarity score over the threshold 𝜂 =
0.6. In the multimodal graph fusion module, we set the number of
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self-attention layers to 6. In image augmentation, we employ the pre-
trained BLIP2 [16] model without further fin-tuning to extract the
captions, and use the stable diffusion model [17] pre-trained on LAION-
5B dataset to generate augmented images. In text augmentation, we
utilize a pre-trained toolkit developed by [15] to generate augmented
texts. During the training stage, we utilize Adam as the optimizer with a
learning rate of 2e−5. Besides, we set weight decay as 5e−3, batch size
as 64, and dropout rate as 0.5 to train the model. To avoid overfitting,
we apply early stopping with a patience of 5. In label-aware graph
contrastive learning, we set both the temperatures 𝜏𝑢 and 𝜏𝑚 to 0.07.
ollowing [5,8,13], we use Accuracy, Precision, Recall, and F1-score to
easure the model performance.

.3. Baseline models

We compare our proposed model LGCL with a series of strong
aselines, summarized as follows:

Unimodal Baselines. For text-modality methods, we adopt
extCNN [46], Bi-LSTM [47], SMSD [48] which employs a
elf-matching network to capture incongruity information for sarcasm
etection, and BERT [49] and Roberta [38] are two pre-trained models
or text classification. For image-modality methods, we employ the
ooled feature of the pre-trained Resnet model and the [CLS] token
btained by the pre-trained ViT model to detect sarcasm.

Multimodal Baselines. For multimodal methods, we consider the
ollowing baseline methods for comparison. These include HFM [5],
hich proposed a hierarchical fusion model for multimodal sarcasm
etection. Res-Att [20] directly concatenated visual and textual features
or multimodal sarcasm prediction. Att-BERT [20] proposed different
ttention strategies to detect sarcasm. DIP [50] introduced a channel-
ise reweighting strategy to model the uncertain correlation. Addi-

ionally, we also evaluate against recent graph-based methods, such
s InCrossMGs [6], which employed a heterogeneous graph structure
o capture ironic features from different perspectives. CMGCN [13]
onstructed a cross-modal graph for each instance to explicitly draw the
ronic relations between different modalities. HKEmodel [7] proposed a
ierarchical framework for sarcasm detection by exploring atomic-level
nd composition-level congruities based on graph neural networks.
ILNet [8] designed three graphs to capture multimodal incongruities.
ulti-view CLIP [12] introduced a correction dataset called MMSD2.0,

nd they also presented a novel framework to leverage multi-grained
ues from multiple perspectives. DynRT-Net [21] modeled the dynamic
echanism to restrict the model from dynamically adjusting to diverse

mage-text pairs.

. Experimental results

.1. Main results

We report the comparison results regarding Text-modality, Image-
odality, and Text+Image modalities in Table 2. From the results, we

an draw the following conclusions. First, our proposed LGCL consis-
ently outperforms existing baselines across all the sarcasm datasets,
emonstrating the effectiveness of our model in multimodal sarcasm
etection. We also conduct significance tests on our LGCL against the
aseline models revealing a significant improvement in terms of most
valuation metrics. Additionally, in comparison to multimodal methods
tilizing Bert as the textual backbone network, our model achieves a
.62% improvement in accuracy over the Multi-view CLIP model on the
MSD dataset. Similarly, when using Roberta as the textual backbone

etwork, our model also outperforms the DynRT-Net model with a
.52% improvement in Accuracy on the MMSD dataset. Besides, our
GCL model consistently outperforms previous graph-based methods
e.g., HKEmodel, MILNet), indicating the superiority of applying label-
ware graph contrastive learning. Moreover, methods relying on the
ext modality consistently exhibit superior performance compared to
6

i

hose based solely on the image modality, emphasizing that the core
xpression of sarcastic and non-sarcastic information predominantly
esides within the text modality. Furthermore, methods leveraging
oth image and text modalities consistently outperform the unimodal
aselines across the board, suggesting that harnessing information from
oth modalities proves more effective for multimodal sarcasm detec-
ion. Finally, when considering the MMSD2.0 dataset, the performance
f all text and multimodal baselines experiences a varying degree of
ecrease. This can be attributed to the removal of spurious cues in the
ext data, which further impacts the final results.

.2. Ablation study

In this section, we evaluate the performance of the multimodal
raph fusion module, label-aware graph contrastive learning, and back-
ranslation data augmentation, as listed in Table 3. The results indicate
hat our model achieves the best performance when composing all
hese components. Additionally, the proposed multimodal graph fu-
ion (MGF) module demonstrates competitive performance compared
o previous graph-based methods, showing its effectiveness in fus-
ng multimodal graphs. On this foundation, incorporating label-aware
nimodal contrastive loss (LUCL) and label-aware multimodal con-
rastive loss (LMCL) can further improve the model’s performance.
his demonstrates that LUCL and LMCL can enhance the model’s abil-

ty to recognize and utilize shared sentiment cues within the graph
epresentations. Moreover, the utilization of back-translation data aug-
entation to augment positive and negative samples in the data domain
roves effective for graph contrastive learning, resulting in improved
erformance.

We also analyze the impact of the label-aware strategy in unimodal
ontrastive learning to further demonstrate the effectiveness of the
roposed label-aware unimodal contrastive loss (LUCL). We conducted
xperiments by adding two different unimodal contrastive losses to the
ultimodal graph fusion module (MGF). The experimental results are

hown in 4. In the table, ‘‘UCL’’ represents the traditional unimodal
ontrastive loss, which is consistent with the previous Vision-and-
anguage Pre-training (VLP) methods, treating unimodal features from
he same instance as positive samples for each other, while considering
ll other instances as negative samples. ‘‘LUCL’’ represents the proposed
abel-aware contrastive loss, which constrains negative sample retrieval
o instances with different labels from the target instance. Note that in-
orporating UCL did not yield a significant improvement in the model’s
erformance, and in some evaluation metrics, there was even a decline.
onversely, equipping LUCL resulted in a noticeable enhancement.
rom the results, we conclude that restricting the retrieval of negative
amples based on sentiment labels effectively prevents the model from
onsidering data from the same label as negative samples, thus avoiding
isruption in the negative sample space. And, this further lead to
mproved performance.

Furthermore, we conducted data augmentations in both the struc-
ural and data domains while testing the impacts on graph contrastive
earning. Specifically, we employed a uniformly dropping edge scheme
n the structural domain, and in the data domain, we utilized the
roposed back-translation augmentation scheme. The results are shown
n Table 5. Among them, ‘‘MGF+LGCL’’ denotes the model with the
roposed label-aware graph contrastive learning (LGCL), ‘‘MGF+LGCL+
DeA’’ denotes the model with label-aware graph contrastive learning
nd uniformly dropping edge augmentation, and ‘‘MGF+LGCL+BTrA’
enotes the model with label-aware graph contrastive learning and
ack-translation augmentation. Obviously, the model based on back-
ranslation augmentation achieves better performance than the model
ased on uniformly dropping edge augmentation. This demonstrates
hat data augmentation in the data domain, as opposed to in the
tructural domain, does not require disrupting the graph structure,
hus preserving information in the graph more effectively and result-

ng in a more significant improvement in graph contrastive learning.



Knowledge-Based Systems 300 (2024) 112109Y. Wei et al.
Table 2
Comparison results for sarcasm detection. We use † to indicate the graph-based models. Results with ‡ indicate that the model uses RoBERTa as the textual
backbone network, while others use BERT as the textual backbone network.

Model MMSD MMSD2.0

ACC (%) P (%) R (%) F1 (%) ACC (%) P (%) R (%) F1 (%)

text

TextCNN 80.03 74.29 76.39 75.32 71.61 64.62 75.22 69.52
Bi-LSTM 81.9 76.66 78.42 77.53 72.48 68.02 68.08 68.05
SMSD 80.9 76.46 75.18 75.82 73.56 68.45 71.55 69.97
BERT 83.85 78.72 82.27 80.22 74.78 70.52 76.39 73.34
RoBERTa 87.55 82.09 84.33 83.19 79.66 76.74 75.70 76.21

image Resnet 64.76 54.41 70.8 61.53 65.50 61.17 54.39 57.58
Vit 67.83 57.93 70.07 63.4 72.02 65.26 74.83 69.72

text+image

HFM 83.44 76.57 84.15 80.18 70.57 64.84 69.05 66.88
D&R Net 84.02 77.97 83.42 80.6 – – – –
Res-BERT 84.80 77.80 84.15 80.85 – – – –
Att-BERT 86.05 80.87 85.08 82.92 80.03 76.28 77.82 77.04
InCrossMGs† 86.10 81.38 84.36 82.84 – – – –
CMGCN† 86.54 – – 82.73 79.83 75.82 78.01 76.9
HKEmodel† 87.36 81.84 86.48 84.09 76.5 73.48 71.07 72.25
Multi-view CLIP 88.33 82.66 88.65 85.55 85.64 80.33 88.24 84.1
MILNet†‡ 89.50 85.16 89.16 87.11 – – – –
DIP‡ 92.97 91.95 94.08 93.01 – – – –
DynRT-Net‡ 93.49 – – 93.21 – – – –

LGCL(ours)† 89.95 86.27 90.05 88.12 85.76 85.19 87.04 86.11
LGCL(ours)†‡ 94.01∗ 92.67∗ 95.39∗ 93.59∗ – – –
Fig. 4. Hyper-parameter analysis of the LGCL model on the MMSD dataset.
Table 3
The ablation results of our model.

Model ACC (%) Pre (%) Rec (%) F1 (%)

MILNet 89.50 85.16 89.16 87.11
MGF 91.59 88.42 92.37 90.35
+LUCL 92.46 89.36 92.94 91.12
+LUCL+BTrA 92.95 89.87 93.41 91.61
+LMCL 92.76 89.52 93.09 91.27
+LMCL+BTrA 93.11 89.95 93.66 91.77
+LUCL+LMCL 93.56 91.37 94.52 92.92
+LUCL+LMCL+BTrA 94.01 92.67 95.39 93.59

Table 4
Performance of using different unimodal contrastive losses.

Model ACC (%) Pre (%) Rec (%) F1 (%)

MGF 91.59 88.42 92.37 90.35
MGF+UCL 91.41 88.29 92.95 90.56
MGF+LUCL 92.46 89.36 92.94 91.12

On this basis, we also experimented with other text augmentation
methods (paraphrasing) to show the effectiveness of the proposed
model. The results are shown below. It can be observed that compared
7

to the GPT3.5-based approach, the data augmented by paraphrasing
did not significantly improve the model’s performance. Upon close
examination of the texts generated by paraphrasing, we noticed that
while they generally preserved the overall meaning of the original
texts, many ironic features were lost. This issue directly contributed
to the poor performance of contrastive learning. However, when we
used the GPT3.5-based back-translation augmentation method, due to
GPT3.5’s strong zero-shot generalization ability, the augmented texts
retained the original meaning to a great extent, thus facilitating the
improvement of contrastive learning.

Last but not least, we also conduct the experiments by augmenting
only one modality in the proposed back-translation data augmentation.
Table 7 illustrates the results. We can observe that image data aug-
mentation ‘‘+LGCL+BTrA𝑖𝑚𝑎𝑔𝑒’’ yields relatively small benefits to the
model, whereas text data augmentation ‘‘+LGCL+BTrA𝑡𝑒𝑥𝑡’’ brings more
significant improvements to the model’s performance. We attribute it to
the fact that image data augmentation utilizes stable-diffusion models,
whose image generation capabilities still require further improvement,
resulting in noisy generated image data. In contrast, text data augmen-
tation leverages the powerful zero-shot generation capabilities of large
language models, achieving more refined and high-quality text data
(see Table 6).
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Table 5
Performance of the model with different data augmentations.

Model ACC (%) Pre (%) Rec (%) F1 (%)

MGF+LGCL 93.56 91.37 94.52 92.92
MGF+LGCL+UDeA 93.75 91.63 95.01 93.29
MGF+LGCL+BTrA 94.01 92.67 95.39 93.59

Table 6
Performance of the model with different data augmentation methods on text modality

Model ACC (%) Pre (%) Rec (%) F1 (%)

LGCL 93.56 91.37 94.52 92.92
+LGCL+Paraphrasing 93.37 91.29 94.55 92.93
+LGCL+BTrA𝑡𝑒𝑥𝑡 93.89 92.12 94.67 93.38

Table 7
Performance of the model with data augmentation on one modality.

Model ACC (%) Pre (%) Rec (%) F1 (%)

LGCL 93.56 91.37 94.52 92.92
+LGCL+BTrA𝑖𝑚𝑎𝑔𝑒 93.77 91.65 94.63 93.12
+LGCL+BTrA𝑡𝑒𝑥𝑡 93.89 92.12 94.67 93.38

Table 8
Performance of three different types of models equipped with our LGCL for
sarcasm detection.

Model ACC(%) Pre(%) Rec(%) F1(%)

DIP 92.97 91.95 94.08 93.01
DIP(LGCL) 94.05 93.17 95.02 94.09
DynRT-Net 93.49 – – 93.21
DynRT-Net(LGCL) 94.77 94.66 94.38 94.52

5.3. Parameter analysis

In this section, we conduct experiments to analyze the hyper-
parameters for the proposed LGCL model.

Analysis of the cosine similarity threshold in visual graph.
We first investigate the parameter analysis for the cosine similarity
threshold 𝜂 in the visual graph encoder. Fig. 4(a) shows that increasing
the threshold of the cosine similarity leads to continuous improvement
in accuracy and F1 score, but it decreases accuracy when the threshold
is greater than 0.6. Therefore, selecting 0.6 for the cosine similarity
threshold is optimal since it achieves the best performance.

Analysis of the number of self-attention layers. We measure the
model performance on the ACC and F1 score along with a range of the
multi-head self-attention layer number 𝑀 from 1 to 12. We can see
in Fig. 4(b), that the ACC score and F1 score increase until reaching a
peak point when 𝑀 equals 6. Our model achieves the best performance
at this point. Then, the model performance begins to decrease as 𝑀
continues to grow. We guess the performance worsens, probably due
to the increase of the model parameter, suggesting that adding more
multimodal graph fusion layers might not enhance but impede the
performance.

Universal discussion. To verify LGCL can boost different types
of models, we respectively select the previous SOTA models DIP and
DynRT-Net for sarcasm detection to perform the experiments in Ta-
ble 8. It can be seen that the proposed LGCL improves the performance
steadily for the previous SOTA models These results further validate
the universality of our model.

5.4. Case study

To further demonstrate the effectiveness of our model, we provide
a case study. We compare the results predicted based on the model
with and without(w/ and w/o) label-aware graph contrastive learning
(LGCL). As shown in Fig. 5, we can observe that, for these complex
8

Fig. 5. Case study with and without label-aware graph contrastive learning(LGCL). The
phrases in red font contain strong ironic cues.

cases, it is challenging for the pure multimodal graph fusion module
(MGF) to capture the user’s sentiments because MGF only captures
the atomic-aware graph relations within individual instances. When
there are numerous interfering elements in the samples, it can boost
the model’s ability to capture the correct ironic cues. For example,
in the first case, the sentiment of the example is solely determined
by the phrase ‘‘interesting candidate’’ in the text, while the presence
of other irrelevant words can introduce interference and hinder the
model’s understanding of the real sentiment for the example. Focusing
solely on the atomic-level relations between text and visual graphs
within individual instances can lead to incorrect outcomes. In contrast,
LGCL relying on label priors to unearth ironic cues from a global
perspective of multimodal data, assists the model to detect ironic clues
more accurately in complex text.

5.5. Visualization

To verify that the label-aware unimodal contrastive loss (LUCL) and
label-aware multimodal Contrastive loss (LMCL) can enhance the model
to detect the shared sentiment cues correlated with sentiment labels,
we conducted visualization experiments on the MMSD dataset. Firstly,
we conduct attention visualization to demonstrate the efficacy of LUCL
loss in facilitating precise alignment between the visual and textual
graph representations. Besides, we depicted the multimodal graph dis-
tribution to illustrate that LMCL loss can cluster multimodal graph
representations for instance pairs with the same label, and separate
those pairs that have disparate labels.

Attention visualization In Fig. 6, we present the attention visu-
alizations extracted from within the self-attention layers in the mul-
timodal graph fusion module, demonstrating the ability of our label-
aware unimodal contrastive loss (LUCL) to perform the unimodal align-
ment. Particularly, we highlight the regions that are most associated
with the specified keywords. The figure reveals that, for the given
keywords, our model can pinpoint the relevant regions within the
image and allocate augmented attention weights to these regions. This
indicates the LUCL’s capability to align textual and visual elements
at the graph level, thereby facilitating the model’s ability to integrate
multimodal graphs.

Distribution visualization To visually demonstrate the superiority
of label-aware multimodal contrastive loss (LMCL), we visualize the
feature distribution on the MMSD val dataset with LMCL loss. Here,
we apply the T-SNE algorithm to perform dimensionality reduction
for the feature, obtaining a 2-dimensional feature vector distribution
visualized in Fig. 7. Fig. 7(a) is the visualization of the distribution
generated by the model without LMCL loss, while Fig. 7(b) shows the
visualization of the distribution generated by the model with LMCL loss.
The figure indicates that by integrating the LMCL loss, an increased
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Fig. 6. Attention visualization of some examples.

Fig. 7. Cluster visualization of MMSD dataset. Different colored dots represent samples
with different labels.

distance between sarcasm and non-sarcasm samples in the graph space
leads to a more pronounced degree of data aggregation. This shows that
the model distinguishes these data in graph space according to common
characteristics inherent to samples sharing the same sentiment.

5.6. Qualitative analysis of data augmentation

We also perform a qualitative analysis of the augmented samples,
which are generated by the proposed back-translation data augmen-
tation (BTrA). Concretely, we select three samples and present both
their original data forms and the augmented data forms (see Fig. 8).
As shown in Fig. 8, we observed that the data augmented through
back-translation becomes more diverse while preserving the semantic
information consistent with the original data. For example, for the
third data in Fig. 8, The enhanced image has essentially restored ‘‘the
snowfall scene in the wilderness’’ from the original image. Meanwhile,
the enhanced textual semantics also remain largely unchanged. Owing
to the semantic in-variance after data augmentation, the graph struc-
tures constructed with the original data and the augmented data also
maintain consistency in graph semantic space. Therefore, the proposed
BTrA can facilitate label-aware graph contrastive learning in the data
domain.

6. Conclusion and future work

In this paper, we propose a novel method called label-aware graph
contrastive learning to address the limitation of existing multimodal
9

Fig. 8. Qualitative Analysis of Data Augmentation. We show three samples with their
original data forms and the augmented data forms.

sarcasm detection approaches in capturing label-aware connections in
the graph semantic space related to sentiment labels. Specifically, we
construct unimodal graphs for each instance and fuse them into a
graph semantic space to obtain multimodal graphs. Then, we introduce
two label-aware graph contrastive losses: the label-aware unimodal
contrastive loss and the label-aware multimodal contrastive loss. These
losses enhance the model’s awareness of shared sentiment cues embed-
ded within the graph representations associated with sentiment labels.
To further improve our contrastive learning process, we introduce
back-translation augmentation for both textual and visual data, which
generates a larger number of positive and negative samples using pre-
trained back-translation techniques. Extensive experiments on publicly
available benchmark datasets demonstrate the superior performance of
our proposed method compared to state-of-the-art baseline approaches.
In future work, we plan to further explore the application of contrastive
learning in multimodal sarcasm detection and delve deeper into its
potential benefits.
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